Do the maths – Alton College students can!

Lucy Bayliss, previously at Amery Hill School and Sara Garanito, previously at Calthorpe Park School took part in this year’s Mathematical Olympiad for Girls. Over 1700 girls nationwide participated, with the top 25% receiving a Certificate of Distinction. The Mathematical Olympiad for Girls is an event run by the UK Mathematics Trust, introduced in 2011 to help schools and college nurture the talent of enthusiastic young female mathematicians. Sara received a Certificate of Participation and Lucy a Certificate of Distinction getting 10/10 for one of the questions (*below).

100 Maths students recently competed in the Senior Maths Challenge with nine achieving a gold award, 31 a silver award and 29 a bronze. Roughly 55,000 students nationally took the Challenge this year, a significant drop on previous years, but there was an increase in participants from Alton College. The Senior Maths Challenge consists of 25 very difficult non-calculator multiple-choice maths questions to be completed in 90 minutes. Students start with 25 marks, get four marks for each correct answer and lose one mark for each incorrect answer, to discourage guessing. See http://www.ukmt.org.uk/individual-competitions/senior-challenge/ for more information about the Challenge, along with the paper and solutions.

Pictured left to right: Lucy Bayliss, Dr Dave Lynch Curriculum Manager for Maths, Sara Garanito

The College’s top scorer was PeterMorris, previously at Eggar’s School; he scored 109 out of 125 which means he goes through to the British Maths Olympiad Round 1 (BMO1). Only the top 1,000 students in the country qualify for the BMO1. A further nine students have got through to the Senior Kangaroo (SK) round, which involves the next 6,000 best students, who don’t qualify for the BMO1.
They are:
Harry Buchanan, previously at Perins School
Lucy Bayliss, previously at Amery Hill School
James Dedman, previously home educated
Marco Li, previously educated overseas
Cameron Neasom, previously at Bohunt School
Rebekah Aspinwall, previously at Amery Hill School
Sam Bishop, previously at St Edmund’s School
James Macmillan Clyne, previously at Bohunt School
Joe Parry, previously at The Petersfield School
Three examples of this year’s challenge are (an easy, medium and hard question):
Q2:  Last year, an earthworm from Wigan named Dave wriggled into the record books as the largest found in the UK.
Dave was 40cm long and had a mass of 26g. What was Dave’s mass per unit length?
A: 0.6 g/cm       B: 0.65 g/cm      C: 0.75 g/cm      D: 1.6 g/cm       E: 1.75 g/cm

 

Q11:  The teenagers Sam and Jo notice the following facts about their ages:
The difference between the squares of their ages is four times the sum of their ages.
The sum of their ages is eight times the difference between their ages.
What is the age of the older of the two?
A: 15                 B: 16                 C: 17                  D: 18                 E: 19

Q24:  There is a set of straight lines in a plane such that each line intersects exactly ten others.
Which of the following could not be the number of lines in that set?
A: 11                 B: 12                 C: 15                  D: 16                 E: 20

Answers are B, D and D.

The question Lucy got totally correct:
Let n be an odd integer greater than 3 and let M = n2 + 2n − 7.
Prove that, for all such n, at least four different positive integers (excluding 1 and M) divide M exactly.

SaveSave

%d bloggers like this: